La Physique de l'Art Autour du son ... Université

PAF 2012-2013 Physique et Arts

Sciences et Technologies

Le son dans les programmes

Encart BO n° 32 du 28 août 2008 : organisation de l'enseignement de l'histoire des arts à l'école, au collège et au lycée

6 grands domaines artistiques dont les « arts du son »

Tableau et suggestions pour l'Histoire de l'art au collège par B. Legris, académie de Versailles (8 octobre 2009)

- La musique et les arts du son sont traités en éducation musicale

Terminale S

- Observer : ondes et matière
- Spécialité de PC : thème 2 : son et musique

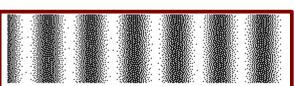
Ce qui va être (entre)vu

Qu'est ce que le son?

- Acoustique physique
 - Caractéristiques ; Grandeurs et phénomènes physiques
- Acoustique physiologique
 - Ouïe ; Parole
- Acoustique psychologique
 - Comment quantifier la sensation auditive ? Son pur son complexe

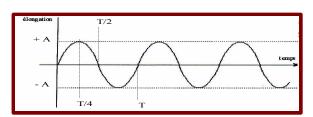
Applications

- Acoustique des instruments de musique
 - résonance
- Acoustique des salles
 - Interaction son matière



Qu'est ce que le son?

Transmission d'énergie émise par un corps en vibration

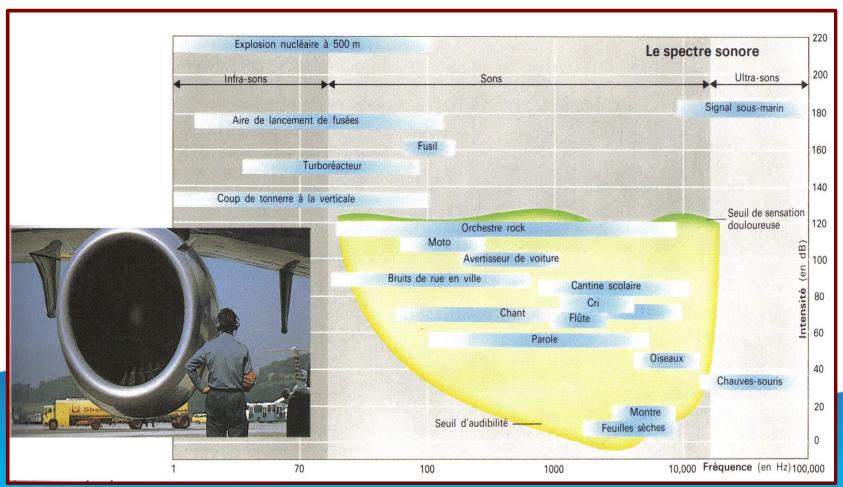

Onde de pression provoquée dans un milieu élastique et s'y propageant

Variation sinusoidale de la pression de l'air

- A amplitude, entre 20 μPa et 200 Pa
- f fréquence (hauteur),
 entre 20 Hz et 20 kHz = audible
 infrason et ultrason
- λ longueur d'onde
- *c* célérité du son : 340 m.s⁻¹ dans l'air, 1500 m.s⁻¹ dans l'eau, 5000 m.s⁻¹ dans les solides

$$p = P - P_0 = A \sin(2\pi f t)$$
$$= A \sin(2\pi \frac{c}{\lambda} t)$$

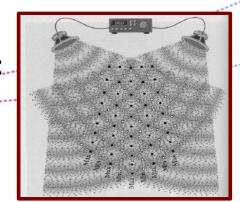
$$c = \sqrt{\frac{dP}{d\rho}}$$

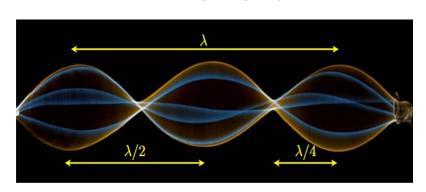

$$= \sqrt{\gamma \frac{RT}{M}} \text{ si gaz parfait}$$

Sciences et Technologies

Autres propriétés

- Intensité acoustique, entre 10⁻¹² et 100 W.m⁻²
- f: 3 ordres de grandeurs; p: 7; I: 14

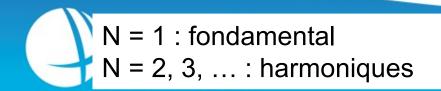

$$I_{dB} = 10 \log_{10} \frac{I}{I_0} = 20 \log_{10} \frac{amplitude}{amplitude standard}$$

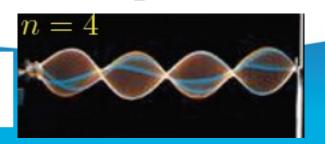

Superposition des sons de même fréquence

2 ondes de sens quelconques et se croisant :

→ interférences

- 2 ondes se propageant en sens opposés : → ondes stationnaires


Ventres : mouvement maximal
$$x = n \frac{\lambda}{2}$$


Nœuds : pas de mouvement
$$x = (2n+1)\frac{\lambda}{4}$$

Résonance

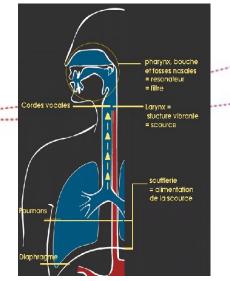
Milieu immobile à ses extrémités (= nœuds) Milieu « ouvert » à ses extrémités (= ventres)

$$L = N\frac{\lambda}{2} \qquad f = N\frac{c}{2L}$$

Résonance acoustique

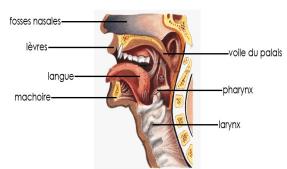
La plupart des instruments de musique emploient des résonateurs

- Cordes des violons, guitares, harpes, luths, pianos, ...
 - fréquences de résonance f_R directement liées à la masse, la longueur et la tension de la corde
 - tension plus élevée et longueur plus courte : f_R augmente
 - excitation en frappant ou pinçant une corde (= impulsion contenant toutes les fréquences) : les fréquences non égales à nf_R sont rapidement atténuées, seules subsistent les vibrations harmoniques que nous entendons comme note musicale
- Longueur du tube d'une flûte
 - flûtes à bec : tuyaux cylindriques ouverts
 - clarinettes et cuivres : tuyaux cylindriques fermés (à un côté)
 - saxophones, hautbois, bassons : tuyaux coniques fermés (à un côté)
- Membrane d'un tambour


Phonation

La soufflerie:

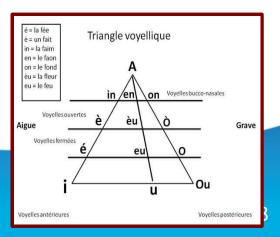
[poumons + diaphragme ... glotte]


Le système vibrateur :

[larynx + cordes vocales]

Points de réglages résonantiels :

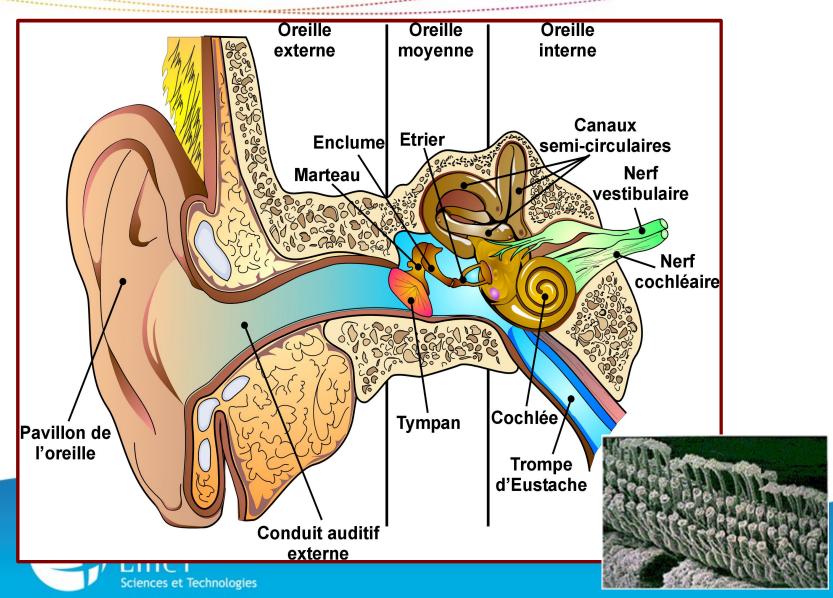
fondamental



Les résonateurs :

[pharynx + bouche + nez]

harmoniques

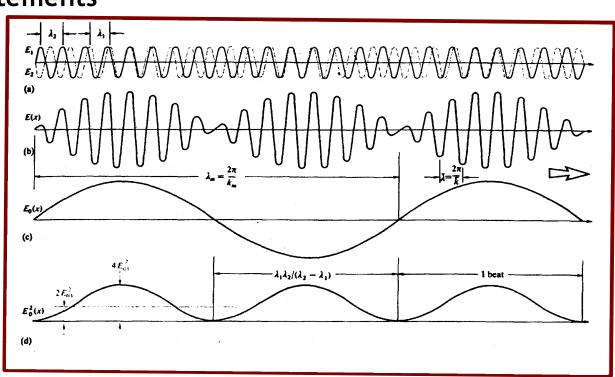


Ouïe

<u>Seuils</u>:

seuil d'audibilité 0 dB 10⁻¹² Wm⁻² ou # 2.10⁻⁵ Pa seuil de douleur 130 dB 10 Wm⁻² ou # 32 Pa

Superposition des sons de fréquences différentes

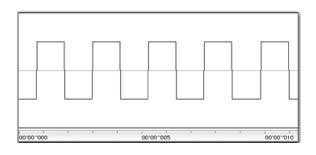

2 ondes : battements

Les deux ondes

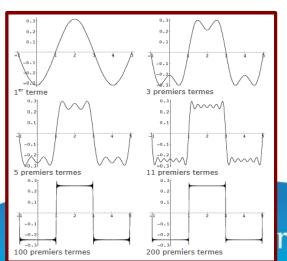
Leur somme

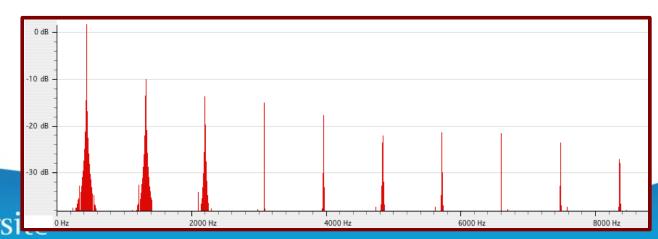
Leur enveloppe

Intensité

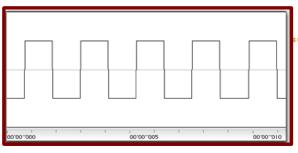

- Application: un instrument est « accordé », lorsqu'il joue exactement le même note que la note de référence, c'est-à-dire lorsque les battements ne sont plus perceptibles
 - référence : le *la* d'un hautbois ou d'un diapason (Δf > qq Hz)
 - accordeurs de pianos

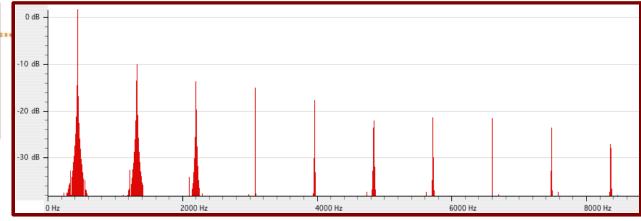
Sciences et Technologies

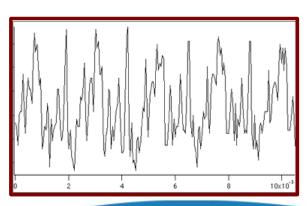

Superposition de plusieurs sons de fréquences différentes

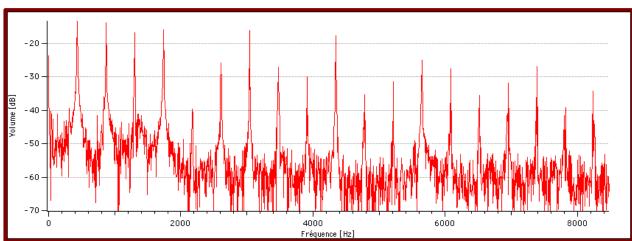

- Théorème de Fourier : tout signal périodique de fréquence f se décompose en une somme de sinusoïdes de fréquences f, 2f, 3f, 4f, ..., appelées harmoniques.

$$F(t) = A_1 \sin(2\pi f t) + A_2 \sin(2\pi 2 f t) + A_3 \sin(2\pi 3 f t) + A_4 \sin(2\pi 4 f t) + \dots$$

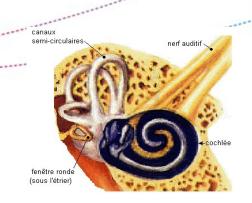



Créneau à 440 Hz




Superposition de plusieurs sons de fréquences différentes : TIMBRE

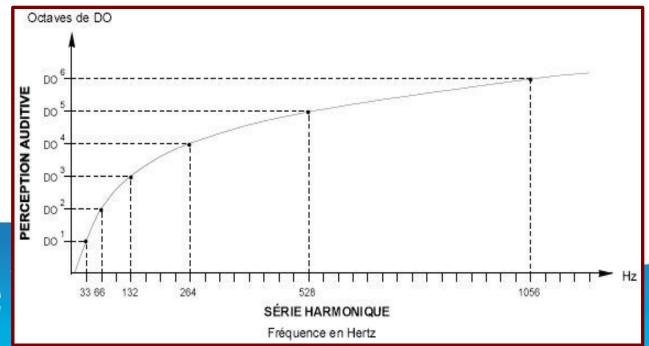
violon à 440 Hz



L'analyseur de Fourier est dans l'oreille interne

- les milliers de cils vibratiles de la cochlée vibrent en résonance avec les différentes composantes fréquentielles du son
- le cerveau enregistre les vibrations des différents cils et mémorise les termes de la série pendant plus ou moins longtemps en fonction de l'intérêt qu'on y porte

Découpage du monde sonore

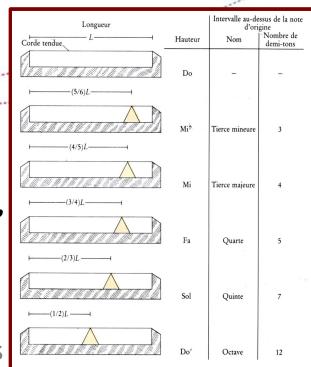

- Lorsque la fréquence est multipliée par 2, le cerveau reconnaît la similitude des termes paires de la série : A_{2n} sin $(2\pi \ nf\ t)$: il donne le même nom au $2^{\text{ème}}$ son en précisant que l'un est plus grave que l'autre

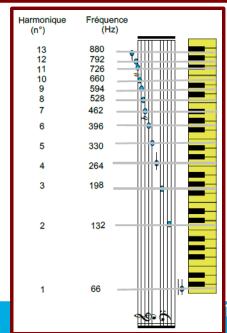
Intervalle [f, 2f]

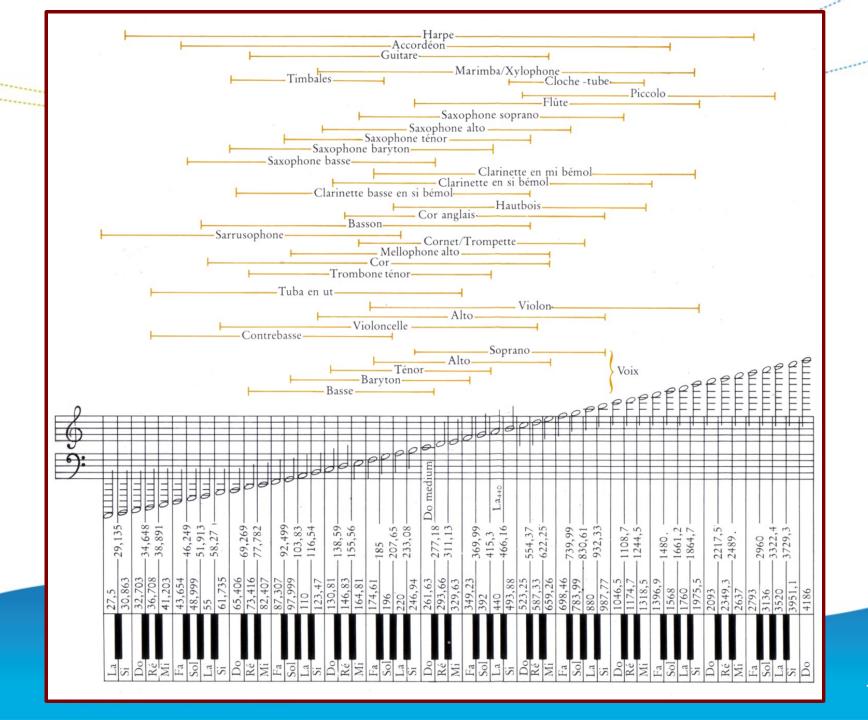
- L'échelle musicale d'une seule octave permet à l'oreille de se repérer dans tout le domaine fréquentiel. Le changement d'octave ne perturbe pas la reconnaissance des notes
- Une harmonie juste est plaisante car la consonance entre 2 sons est d'autant plus forte qu'ils partagent les mêmes harmoniques

La perception auditive est logarithmique ...

- L'oreille est plus sensible au <u>rapport</u> entre deux fréquences qu'à leur <u>soustraction</u>.
 - Perception du Do 66 Hz et du Do 33 Hz (distance 33 Hz ; rapport 2:1)
 - Perception du Do 528 Hz et du Do 1056 Hz (distance 528 Hz; rapport 2:1)
- La distance séparant les Do 33 et 66 Hz semble identique à la distance séparant les Do 528 et 1056 Hz, parce que le rapport est le même.


Harmonie = plaisir ...


Ce n'est pas la valeur numérique d'une fréquence qui compte, c'est l'intervalle (= « tons » ou « demi-tons ») entre les notes d'une même octave : si l'intervalle est harmonieux, il est conservé s'il est discordant, il est rejeté.


- 1ère explication scientifique par Pythagore (550 avant J.C.)
 - relation entre les longueurs des cordes et les intervalles musicaux

- 2ème explication musicale par Aristoxène

- classement des intervalles en fonction du plaisir musical ressenti
- le plaisir est d'origine physiologique
- La série d'intervalle correspond exactement à la série de Fourier!

Œil

Oreille

Rétine

(3 cônes)

Cochlée

(15 000 cellules ciliées)

Sens. = photon unique

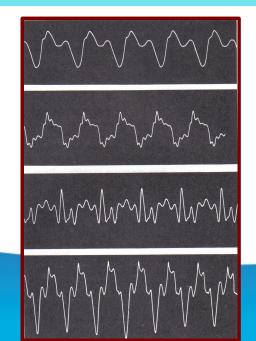
Sens. = 2×10⁻⁵ Pa

4×10¹⁴ - 8×10¹⁴ Hz

(x 2 - 1 octave)

20 - 20×10³ Hz


(x 1000 - 10 octaves)


Analyse en fréquence

(capacité à distinguer des ondes de fréquences voisines)

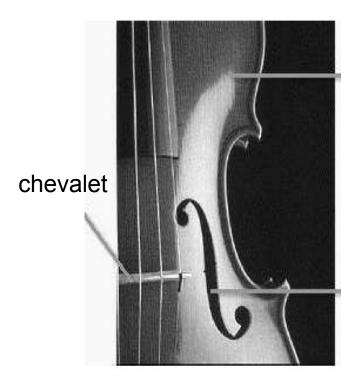
Intégrateur

Grande discrimination

flute

clarinette

hautbois


saxophone

Comment le son est-il amplifié ?

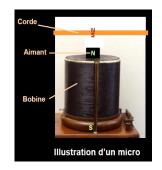
Transmission mécanique

- Violon:

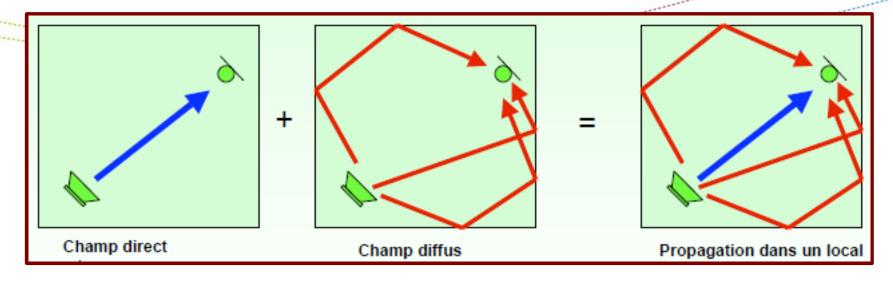
- Les vibrations des cordes sont transmises au chevalet qui les transmet à la caisse du violon.
- Les vibrations du bois produisent des variations du volume d'air situé à l'intérieur de la caisse. L'air est successivement aspiré et expulsé par les ouïes
- La qualité du violon vient de la capacité du bois et de l'air de vibrer à l'unisson, en résonance

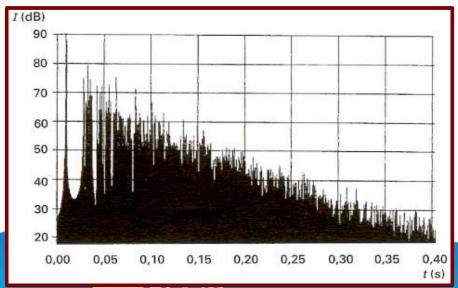
caisse

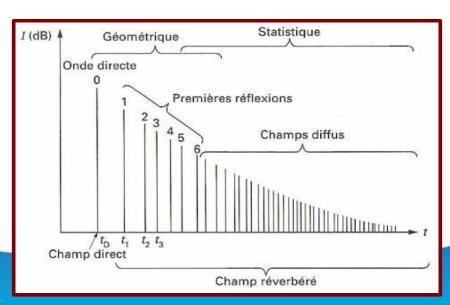
ouïe

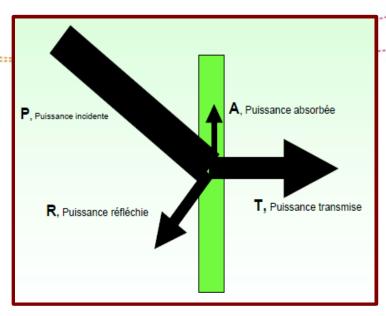

Comment le son est-il amplifié?

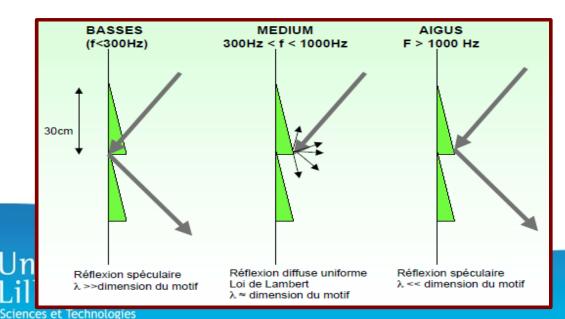
Transmission électronique

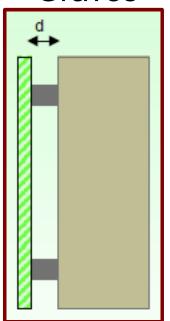

- Guitare


- Micro, simple fil enroulé autour d'un aimant, placé sous chaque corde
- La corde ferromagnétique (Ni-Fe) baigne dans le champ magnétique de l'aimant : en vibrant elle perturbe les lignes de champ et crée une force contre électromotrice au sein de la bobine, se traduisant à ses bornes par une différence de potentiel périodique.
- Cette ddp est amplifiée pour être convertie en puissance électrique transmise à un haut parleur.



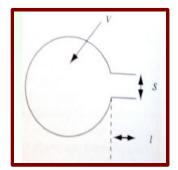


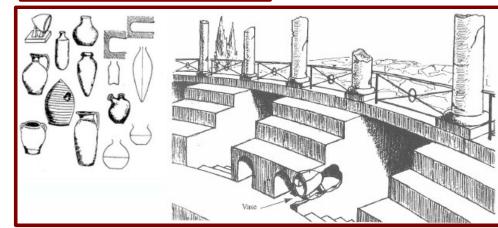




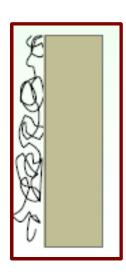
Réflexion

Absorption


Graves

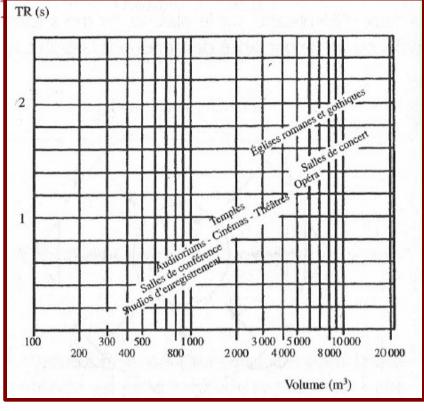

$$f_0 = \frac{60}{\sqrt{\rho_s d}}$$

Contreplaqué ρ_s = 5 kg/m² d= 8 cm f_0 = 95 Hz


Médiums

$$f_0 = \frac{1}{2\pi} \sqrt{\gamma \frac{ps}{\rho l V}}$$

Aigus



Temps de réverbération Tr

- Lorsque les sources s'arrêtent, le récepteur peut continuer à capter les ondes réfléchies pendant un certain temps Tr.
- Tr = temps, en secondes, mis par le signal pour décroître de 60 dB (i.e. énergie 1000 fois plus faible) après l'arrêt de la source
 - Formule de Sabine

$$Tr = \frac{0.16 \, V}{\sum \alpha \, S}$$

 La réflexion est inaudible si elle arrive très rapidement après le son direct et/ou si son niveau est très bas par rapport au son direct (= effet de masque)

Références

Sites Internet

- e2phy: http://e2phy.in2p3.fr/2004/e2phy2004.html
 - Conférence de J. Cl. Damien : « De la Physique du son ... à l'Art de s'en servir ! »
 - Conférence de J. Cl. Lerroulley : « Symphonie pour orgue en deux temps et trois mouvements »
- http://www.levirtuose.com/index.php?id=1291
- http://www.cours-chant-paris.fr/actus/comment-fonctionne-voix/

Ouvrages

« Le son musical » par John Pierce.
 Collection « Pour la Science » Belin

